
Copyright Steve Blais, 2008-2010 Page 1 of 18

BUSINESS ANALYST’S VIEW OF SOFTWARE DEVELOPMENT LIFE

CYCLE MODELS

Table of Contents

GENERAL APPROACH..2
LINEAR OR PHASED APPROACHES ...3

WATERFALL ..3
V MODEL ..4
INCREMENTAL DEVELOPMENT ..6

STAGED DELIVERY ..6
ITERATIVE APPROACHES..8

SPIRAL ...8
RATIONAL UNIFIED PROCESS...10

AGILE APPROACHES ...12
RAPID APPLICATION DEVELOPMENT ...12
DSDM ...12
EXTREME PROGRAMMING..14

XP PRINCIPLES...16

List of Figures

Figure 1. Example of a Typical Waterfall Approach ..3
Figure 2. Example of a Typical V Model (IEEE) ..5
Figure 3. Example of the Staged Approach ..7
Figure 4. Example of the Spiral Model ..9
Figure 5. Example of the Rational Unified Process ...11
Figure 6. Example of DSDM Process..13
Figure 7. Example XP Process ...14

BA View of SDLC Models

Copyright Steve Blais, 2008-2010 Page 2 of 18

General Approach

Regardless of the time an activity takes whether they are done simultaneously or
in long planned phases fraught with documentation and approvals, the software
development life cycle (SDLC) must answer certain questions about the product
being developed.

 What is the business problem being solved? Concept Phase
 What is the solution to that problem? Requirements
 How are we going to affect the solution? Logical Design
 What are the elements of that solution? Physical Design and Coding
 How do we know our solution is right? Unit, Integration and System

Testing
 How do we know we have the right solution? Acceptance Testing
 Will it work in the environment with the actual users? Implementation

Each of the life cycle models includes activities, tasks, or phases that answer
these questions, although not necessarily in the direct format given above.

The Essence of the Business Analyst

Copyright Steve Blais, 2008-2010 Page 3 of 18

Linear or Phased Approaches

Waterfall

While the Waterfall Model presents a straight-forward view of the software life
cycle, this view is only appropriate for certain classes of software development.
Specifically, the Waterfall Model works well when the software requirements are
well understood (e.g., software such as compilers or operating systems) and the
nature of the software development involves contractual agreements. The
Waterfall Model is a natural fit for contract-based software development since
this model is document driven; that is, many of the products such as the
requirements specification and the design are documents. These documents
then become the basis for the software development contract.

There have been many waterfall variations since the initial model was introduced
by Winston Royce in 1970 in a paper entitled: “Managing the Development of
Large Software Systems: Concepts and Techniques”. Barry Boehm, developer
of the spiral model (see below), modified the waterfall model in his book Software
Engineering Economics [Prentice-Hall, 1987]. The basic differences in the
various models are in the naming and/or order of the phases.

The basic waterfall approach looks like the illustration below. Each phase is
done in a specific order with its own entry and exit criteria and provides the
maximum in separation of skills, an important factor in government contracting.

Figure 1. Example of a Typical Waterfall Approach

BA View of SDLC Models

Copyright Steve Blais, 2008-2010 Page 4 of 18

While some variations on the waterfall theme allow for iterations back to the
previous phase, “In practice most waterfall projects are managed with the
assumption that once the phase is completed, the result of that activity is cast in
concrete. For example, at the end of the design phase, a design document is
delivered. It is expected that this document will not be updated throughout the
rest of the development. You cannot climb up a waterfall.” [Murray Cantor,
Object-Oriented Project Management with UML, John Wiley, 1998.]

The waterfall is the easiest of the approaches for a business analyst to
understand and work with and it is still, in its various forms, the operational SDLC
in the majority of US IT shops. The business analyst is directly involved in the
requirements definition and/or analysis phases and peripherally involved in the
succeeding phases until the end of the testing phase. The business analyst is
heavily involved in the last stages of testing when the product is determined to
solve the business problem. The solution is defined by the business analyst in
the business case and requirements documents. The business analyst is also
involved in the integration or transition phase assisting the business community
to accept and incorporate the new system and processes.

V Model

The "V" Model (sometimes known as the "U" Model) reflects the approach to
systems development wherein the definition side of the model is linked directly to
the confirmation side. It specifies early testing and preparation of testing
scenarios and cases before the build stage to simultaneously validate the
definitions and prepare for the test stages.

It is the standard for German federal government projects and is considered as
much a project management method as a software development approach.

“The V Model, while admittedly obscure, gives equal weight to testing rather than
treating it as an afterthought. Initially defined by the late Paul Rook in the late
1980s, the V was included in the U.K.'s National Computing Centre publications
in the 1990s with the aim of improving the efficiency and effectiveness of
software development. It's accepted in Europe and the U.K. as a superior
alternative to the waterfall model; yet in the U.S., the V Model is often mistaken
for the waterfall…”

“In fact, the V Model emerged in reaction to some waterfall models that showed
testing as a single phase following the traditional development phases of
requirements analysis, high-level design, detailed design and coding. The
waterfall model did considerable damage by supporting the common impression
that testing is merely a brief detour after most of the mileage has been gained by
mainline development activities. Many managers still believe this, even though
testing usually takes up half of the project time.” [Goldsmith and Graham, “The
Forgotten Phase”, Software Development, July 2002.]

The Essence of the Business Analyst

Copyright Steve Blais, 2008-2010 Page 5 of 18

As shown below, the model is the shape of the development cycle (a waterfall
wrapped around) and the concept of flow down and across the phases. The V
shows the typical sequence of development activities on the left-hand (downhill)
side and the corresponding sequence of test execution activities on the right-
hand (uphill) side.

Figure 2. Example of a Typical V Model (IEEE)

The primary contribution the V Model makes is this alignment of testing and
specification. This is also an advantage to the business analyst who can use the
Model and approach to enforce early consideration of later testing. The V Model
emphasizes that testing is done throughout the SDLC rather than just at the end
of the cycle and reminds the business analyst to prepare the test cases and
scenarios in advance while the solution is being defined.

The business analyst’s role in the V Model is essentially the same as the
waterfall. The business analyst is involved full time in the specification of the
business problem and the confirmation and validation that the business problem
has been solved. This is done at the acceptance test stage. The business
analyst is also involved in the requirements phases and provides advice during
the system test stage which is typically performed by independent testers – the

BA View of SDLC Models

Copyright Steve Blais, 2008-2010 Page 6 of 18

quality assurance group or someone other than the development team. The
primary business analyst involvement in the system test stage is keeping the
requirements updated as changes occur and providing “voice of the customer” to
the testers and development team. The rest of the test stages on the right side
of the Model are done by the development team to ensure they have developed
the product correctly. It is the business analyst’s job to ensure they have
developed the correct product.

Incremental Development

The incremental approach is a generic method of delivering a working part of a
total product or solution. It is the basis of most agile and iterative methods
including Rational Unified Process (RUP). The agile concept of “timeboxing” is
an incremental delivery approach.

Similar to the V Model, incremental development is as much a management
approach to software development as a development approach, probably more
so. “Incremental development is a scheduling and staging technique nicely
suited to projects using technology and techniques new to an organization...[It is]
a scheduling and staging strategy that allows pieces of the system to be
developed at different times or rates and integrated as they are completed.
Specifically intended is that between increments, additions could be made to the
requirements, process changes could be incorporated, or the schedule could be
improved and revised. Incremental is distinguished from iterative development in
that the latter supports "predicted rework" of parts of the system. A good grasp
of incremental development helps in applying iterative development...” [Alistair
Cockburn, “Unraveling Incremental Development”]

Staged Delivery

The staged delivery model initially advanced by Tom Gilb and later championed
by Steve McConnell applies the principles of incremental delivery to the waterfall
model. It is a development approach that emphasizes project planning and risk
reduction by using multiple software releases.

During the first phases of the staged delivery process, the overall problem is
defined and the solution specified. The second phase consists of creating an
architecture for the overall solution. After that, the product is partitioned into
interim or successive deliveries and each delivery goes through its own
development life cycle as shown in the following diagram. The goal of each
stage is to advance toward a complete and robust product on time and within
budget. Typically each stage has its own budget and deliverable schedule that
may be refined based on previous deliverables. The duration of each successive
stage is generally similar. The number of planned stages for achieving a final
release is dependent upon the functionality, application complexity, and so forth.

The Essence of the Business Analyst

Copyright Steve Blais, 2008-2010 Page 7 of 18

Figure 3. Example of the Staged Approach
[From Steve McConnell, Software Project Survival Guide, Microsoft Press]

At the core of successful staged delivery is the customer review that occurs
between stages and is typically based on using the software in the business
environment. This is what Alistair Cockburn calls the “breathing space”. It allows
for customer feedback and adjustments to the architect, requirements, and
process for successive stages.

The staged and any incremental delivery approach presents extra challenges for
the business analyst. After the problem has been defined and the product
requirements specified, the business analyst then may be handling requirements
changes for multiple stages, or addressing the user or stakeholder feedback from
previously installed software while assisting with the development and testing of
succeeding stages. Especially when multiple development teams are involved,
the business analyst activities in a staged or incremental delivery life cycle are
best handled in a team effort with multiple business analysts assigned to different
stages and product deliverables.

BA View of SDLC Models

Copyright Steve Blais, 2008-2010 Page 8 of 18

Iterative Approaches

Spiral

The spiral model was defined by Barry Boehm, now at the University of Southern
California, as an early example of an iterative approach to software development.
It was not the first model to discuss iteration, but it was the first model to explain
why the iteration matters. As originally envisioned, the iterations were typically
six months to two years long.

Each phase of the spiral starts with a design goal (such as a user interface
prototype as an early phase) and ends with the client (which may be internal)
reviewing the progress and determining if the next spiral will take place.

The primary difference between the spiral model and the other life cycle models
is the emphasis of risk assessment as evidenced by the following illustration.
Each cycle through the phases ends with an evaluation by the customer and an
assessment of the risk of going ahead with the next iteration or stopping and
completing the delivery of the product.

Once the product is deemed ready for development based on customer feedback
and risk assessment, the process becomes a standard waterfall approach. The
difference is that the high-level design and specifications have been completed
and the construction phase has a prototype to follow. This makes the
implementation faster and of higher quality.

While the spiral model in its pure form is not used much outside the US Military, it
sets the pattern for most of the agile and iterative approaches that follow it.
There are also a multitude of “spiral” variations for all or parts of the solution life
cycle, such that spiral has almost become synonymous with iterative.

The Essence of the Business Analyst

Copyright Steve Blais, 2008-2010 Page 9 of 18

Figure 4. Example of the Spiral Model
[From Boehm, B.W. “A Spiral Model of Software Development and Enhancement.” IEEE

Software Engineer and Project Management, 1987]

The steps in the spiral model can be generalized as follows:

1. The new system requirements are defined in as much detail as possible. This

usually involves interviewing a number of users representing all the external
or internal users and other aspects of the existing system.

2. A preliminary design is created for the new system.
3. A first prototype of the new system is constructed from the preliminary design.

This is usually a scaled-down system and represents an approximation of the
characteristics of the final product.

4. A second prototype is evolved by a fourfold procedure: (a) evaluating the first
prototype in terms of its strengths, weaknesses, and risks; (b) defining the
requirements of the second prototype; (c) planning and designing the second
prototype; and, (d) constructing and testing the second prototype.

5. At the customer's option, the entire project can be aborted if the risk is
deemed too great. Risk factors might involve development cost overruns,
operating-cost miscalculation, or any other factor that could, in the customer's
judgment, result in a less-than-satisfactory final product.

6. The existing prototype is evaluated in the same manner as was the previous
prototype, and, if necessary, another prototype is developed from it according
to the fourfold procedure outlined above.

BA View of SDLC Models

Copyright Steve Blais, 2008-2010 Page 10 of 18

7. The preceding steps are iterated until the customer is satisfied that the refined
prototype represents the final product desired.

8. The final system is constructed based on the refined prototype.
9. The final system is thoroughly evaluated and tested. Routine maintenance is

carried out on a continuing basis to prevent large-scale failures and to
minimize downtime.

The business analyst’s role in the spiral is further extended into the development
life cycle. In addition to the requirements definition and liaison activities, the
business analyst is typically quite involved with the prototyping efforts and the
risk assessment stages. The business analyst also works with the customer
during the evaluations and sometimes represents the customer in evaluating the
applicability of the product at that point.

Rational Unified Process

The Rational Unified Process (RUP) was developed by Ivar Jacobson, Grady
Booch, and Jim Rumbaugh at Rational Software Corporation after they had
defined the Unified Modeling Language (UML). Both the UML and the Unified
Process were handed over to the Object Management Group (OMG) to be
established as object-oriented development standards. The approach assumes
the development will be done using object-oriented analysis, design, and
programming as a basis.

“RUP is a software engineering process. It provides a disciplined approach to
assigning tasks and responsibilities within a development organization. Its goal
is to ensure the production of high-quality software that meets the needs of its
end users within a predictable schedule and budget…The Rational Unified
Process is also a process framework that can be adapted and extended to suit
the needs of an adopting organization.” [Philippe Krutchen, RUP: An
Introduction, 3rd edition, Addison-Wesley, 2003.]

The RUP is organized around phases and disciplines in a matrix (see the
illustration that follows) that emphasizes the iterative nature of the process. Each
of the disciplines iterates a number of times through each of the phases until the
exit criteria for that phase are achieved. The phases are not defined so much by
activities, but by goals and outcomes:

 Inception: agreement among the team and customer as to what will be
built,

 Elaboration: agreement within the team as to the architecture and
design needed to deliver the agreed system behavior,

 Construction: the iterative implementation of a fully functional system,
 Transition: delivery, defect correction, and tuning to ensure customer

acceptance.

The Essence of the Business Analyst

Copyright Steve Blais, 2008-2010 Page 11 of 18

Figure 5. Example of the Rational Unified Process
[From Rational Software Corporation]

The RUP is a use-case driven, UML-based iterative development approach that
delivers software incrementally.

The business analyst is usually deeply involved as the “voice of the customer”
throughout all the iterations and phases, more so, of course, in the inception and
elaboration phases.

BA View of SDLC Models

Copyright Steve Blais, 2008-2010 Page 12 of 18

Agile Approaches

Rapid Application Development

Rapid Application Development (RAD) is also a generic term for a range of
evolutionary prototyping approaches. Many of the approaches have been
developed over the years and are used within organizations and by consulting
firms to produce software results on a more rapid basis than the structured linear
methods. RAD is now in vogue due to the increasing demand for web-based
software to be developed at high speed.

Most RAD approaches nowadays are object-oriented because of the speed
object-oriented languages and tools provide. However, RAD approaches have
been successfully applied to speed up structured analysis, design and
programming efforts.

DSDM

The Dynamic Systems Development Method (DSDM) is a framework of controls
for the development of IT systems to tight timescales. It is independent of any
particular set of tools and techniques. It can be used with object-oriented,
structured analysis, and design approaches in environments ranging from the
individual PC to global distributed systems. DSDM has been used successfully
by organizations in both the public and private sectors.

DSDM provides a generic process which must be tailored for use in a particular
organization dependent on the business and technical constraints. DSDM
outlines a five-phase process:

1. Feasibility Study
The feasibility study assesses the suitability of the application for a
RAD approach and checks that certain technical and managerial
conditions are likely to be met. The feasibility study typically lasts a
matter of weeks.

2. Business Study

The business study scopes the overall activity of the project and
provides a sound business and technical basis for all future work. The
high-level functional and non-functional requirements are baselined, a
high-level model of the business functionality and information
requirements is produced, the system architecture is outlined and the
maintainability objectives are agreed upon.

The Essence of the Business Analyst

Copyright Steve Blais, 2008-2010 Page 13 of 18

3. Functional Model Iteration
The bulk of development work is in the two iteration phases where
prototypes are incrementally built towards the tested system which is
placed in the user environment during the implementation phase.

4. Design and Build Iteration

During the design and build iteration, the focus is on ensuring that the
prototypes are sufficiently well engineered for use in the operational
environment.

5. Implementation

Implementation consists of putting the latest increment into the
operational environment and training the users. The final step in
implementation is a review of what has been achieved.

Principles of DSDM are:

 Active user involvement is imperative,
 DSDM teams must be empowered to make decisions,
 The focus is on frequent delivery of products,
 Fitness for business purpose is the essential criterion for acceptance of

deliverables,
 Iterative and incremental development is necessary to converge on an

accurate business solution,
 All changes during development are reversible,
 Requirements are baselined at a high level,
 Testing is integrated throughout the life-cycle,
 A collaborative and co-operative approach between all stakeholders is

essential.

Figure 6. Example of DSDM Process
[From Stapleton, Jennifer. DSDM: The Method in Practice. Addison-Wesley, 1997]

BA View of SDLC Models

Copyright Steve Blais, 2008-2010 Page 14 of 18

Extreme Programming

Extreme Programming (XP) is the poster child for the agile approaches. The
process was developed by Kent Beck, Ward Cunningham, and Ron Jeffries.
When people think of agile they usually think in terms of XP. Extreme
Programming is a software development methodology that represents a
throwback to the very earliest and purest days of software development when
technicians ran the show. Then, software engineers enjoyed greater autonomy
largely because there were few in the management ranks who understood the
task at hand.

XP is the highest risk approach and requires the greatest skill, knowledge and
experience to run it successfully. According to the founders, all the principles of
XP must be adhered to be successful; adapting several of the principles and
trying to do XP will not work.

Figure 7. Example XP Process

The XP process as shown above starts with a project's requirements which are
laid out as individual stories typically written on 3x5 index cards. These stories
have test cases which are written by the customer and developer working as a
team. A test case includes the test and the desired results which, if met, indicate
that that story is complete.

The Essence of the Business Analyst

Copyright Steve Blais, 2008-2010 Page 15 of 18

The project is done in iterations. At the end of an iteration, the next iteration is
planned out in an iteration planning meeting called the Planning Game. The
customer (with the developers' guidance, of course) decides what stories are to
be implemented in the next iteration, based on what is most important to them,
and what is most practical to implement next.

It is important that all iterations take the same amount of time. This is so that
metrics can be retained that let the XP team know what their velocity (speed of
development) is. The time that it took to complete a given story is recorded so
that the programmers get a good feel for how much effort it takes to do that type
of work.

The stories are broken down into tasks, which are the steps needed to implement
a given user story. Developers then sign up to do those tasks.

On the completion of an iteration, acceptance tests are done to ensure that the
test cases defined in that story have been met. The acceptance tests include
both automated unit testing and customer testing. This ensures that all
requirements are reached since the development is based around those
requirements for which there are definite indicators that tell whether a given
requirement is met. It also breaks down the project into reachable goals rather
than having programmers work away forever on an ever-expanding scope.

Some XP Precepts:

 XP calls for short release cycles, a few months at most, so the scope
of any slip is limited. Within a release, XP uses one- to four-week
iterations of customer-requested features for fine-grained feedback
about progress. Within an iteration, XP plans with one- to three-day
tasks, so the team can solve problems even during an iteration.

 XP asks the customer to choose the smallest release that makes the

most business sense, so there is less to go wrong before going into
production and the value of the software is greatest.

 XP creates and maintains a comprehensive suite of tests, which are

run and re-run after every change (several times a day), to ensure a
quality baseline.

 XP calls for the customer to be an integral part of the team. The

specification of the project is continuously refined during development,
so learning by the customer and the team can be reflected in the
software.

BA View of SDLC Models

Copyright Steve Blais, 2008-2010 Page 16 of 18

 XP asks programmers to accept responsibility for estimating and
completing their own work, gives them feedback about the actual time
taken so their estimates can improve, and respects those estimates.
[Kent Beck, Extreme Programming Explained, Addison-Wesley, 2004]

XP Principles

The following principles from Kent Beck’s book Extreme Programming Explained
constitute the essence of XP. Many are the same as principles already
described for other agile processes or in general. Some were initiated by XP and
some were adopted by XP.

1. The Planning Game: Business and development cooperate to produce
the maximum business value as rapidly as possible. The Planning
Game happens at various scales but the basic rules are the same:

– Business comes up with a list of desired features for the system.

Each feature is written out as a user story, which gives the feature
a name, and describes in broad strokes what is required. User
stories are typically written on 3x5 cards.

– Development estimates how much effort each story will take and
how much effort the team can produce in a given time interval.

– Business then decides which stories to implement in what order, as
well as when and how often to produce a production release of the
system.

2. Small Releases: XP teams practice small releases in two important

ways:

– First, the team releases running, tested software, delivering
business value chosen by the customer, [at] every iteration. The
customer can use this software for any purpose, whether evaluation
or even release to end users. The most important aspect is that the
software is visible, and given to the customer, at the end of every
iteration.

– Second, XP teams release to their end users frequently as well.
XP web projects release as often as daily, in-house projects
monthly or more frequently.

3. Simple Design: XP uses the simplest possible design that gets the job

done. The requirements will change tomorrow, so only do what's
needed to meet today's requirements. Design in XP is not a one-time
thing but an all-the-time thing. There are design steps in release
planning and iteration planning, plus teams engage in quick design
sessions and design revisions through refactoring throughout the
course of the entire project.

The Essence of the Business Analyst

Copyright Steve Blais, 2008-2010 Page 17 of 18

4. Metaphor: Extreme Programming teams develop a common vision of

how the program works which we call the "metaphor". At best, the
metaphor is a simple description of how the program works. XP teams
use a common system of names to be sure that everyone understands
how the system works and where to look to find the correct
functionality you're, or to find the right place to put the functionality
you're about to add.

5. Continuous Testing: XP teams focus on validation of the software at

all times. Programmers develop software by writing tests first, and
then writing code that fulfills the requirements reflected in the tests.
Customers provide acceptance tests that enable them to be certain
that the features they need are provided.

6. Refactoring: XP Team refactors out any duplicate code generated in a

coding session. Refactoring is simplified due to extensive use of
automated test cases.

7. Pair Programming: All production code is written by two programmers

sitting at one machine. This practice ensures that all code is reviewed
as it is written and results in better design, testing, and code.

– Some programmers object to pair programming without ever trying

it. It does take some practice to do well, and you need to do it well
for a few weeks to see the results. Ninety percent of programmers
who learn pair programming prefer it, so it is recommended to all
teams. Pairing, in addition to providing better code and tests, also
serves to communicate knowledge throughout the team.

8. Collective Code Ownership: No single person "owns" a module. Any

developer is expected to be able to work on any part of the codebase
at any time.

9. Continuous Integration: All changes are integrated into the codebase

at least daily. The unit tests have to run 100% both before and after
integration. Infrequent integration leads to serious problems on a
software project. First of all, although integration is critical to shipping
good working code, the team is not practiced at it, and often it is
delegated to people who are not familiar with the whole system.
Problems creep in at integration time that are not detected by any of
the testing that takes place on an unintegrated system. Also weak
integration process leads to long code freezes. Code freezes mean
that you have long time periods when the programmers could be
working on important shippable features but that those features must
be held back.

BA View of SDLC Models

Copyright Steve Blais, 2008-2010 Page 18 of 18

10. 40-Hour Work Week: Programmers go home on time. In crunch

mode, up to one week of overtime is allowed. But multiple consecutive
weeks of overtime are treated as a sign that something is very wrong
with the process and/or schedule.

11. On-Site Customer: Development team has continuous access to the

customer who will actually be using the system. For initiatives with lots
of customers, a customer representative (i.e., Product Manager) will be
designated for Development Team access.

12. Coding Standards: Everyone codes to the same standards. The

specifics of the standard are not important: what is important is that all
the code looks familiar, in support of collective ownership.

The business analyst has a place in the solution development effort regardless of
the development approach or methodology used by the solution team.

